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Abstract— We propose a ramp metering strategy capable of
treating exogenous arrivals as random variables since freeway
network arrivals are stochastic by nature. In order to express
desired temporal properties of the network, we adopt Signal
Temporal Logic (STL) as our specification language and present
a general framework for synthesizing controllers for piecewise
affine systems subject to stochastic uncertainties. We synthe-
size controllers that satisfy these stochastic STL specifications
through sample average approximation techniques. We further
showcase our approach for a freeway ramp metering example,
we use sampling techniques to obtain ramp flows that minimize
the expectation of the total travel time.

I. INTRODUCTION

In recent years, increase in traffic congestion and delay has
been recognized as an undesirable phenomenon, experienced
by almost every commuter in the urban and metropolitan
areas. This increase in traffic congestion necessitates the de-
velopment of traffic management and control tools alleviating
congestion, leading to a reduction in the costs incurred on
a traffic network such as delays, greenhouse gas emissions,
and fuel consumption. This alleviation can be achieved either
by enhancing the current infrastructure, or devising manage-
ment and control algorithms capable of increasing network
throughput with the existing infrastructure. As expansion of
infrastructures is a prolonged and high–priced process, the
latter plays a key role in ameliorating traffic conditions.

The focus of this work is on freeway traffic networks,
while the approach can be generalized to other transportation
networks including urban arterials. Among possible opera-
tional strategies in freeway traffic control, ramp metering
is proven to be effective and crucial [1]. Because of the
effectiveness of ramp metering in reducing freeway traffic
congestion, a large amount of research has been conducted
on development of ramp metering algorithms ranging from
classical control tools to synthesis from formal specifications.
A recent approach toward traffic control is employment of
formal methods techniques [2], [3], which allows the control
algorithm to consider a richer class of objectives such as
safety, reachability and liveness. Nonetheless, a key assump-
tion common in the ramp metering algorithms proposed in
the literature is that vehicular arrivals are deterministic and
known a priori, which might not be the case in real time
scenarios and applications. Vehicular arrivals are random by
nature; in other words, underlying distribution of arrivals

extracted from the available historical data might be the only
available information about exogenous arrivals.

In this work, we aim to synthesize ramp metering con-
trollers from temporal logic specifications while treating the
vehicular arrivals as stochastic signals with known distribu-
tions. Notice that some characteristics of traffic networks,
important to individual drivers, can only be captured by
taking the randomness of vehicular arrivals into account. For
instance, minimizing variations of Total Travel Time of the
network can be an attractive and advantageous criteria as
it reduces the uncertainties experienced by the drivers [4].
Particularly, our work fills the gap between inherent random
nature of exogenous traffic arrivals and inadequacies of
existing temporal–logic–based ramp metering algorithms to
capture the uncertainties arising from this randomness.

We use Signal Temporal Logic (STL) [5] in a proba-
bilistic framework, allowing for encoding rich and complex
specifications of random continuous variables. Due to the
nonlinearities of freeway traffic dynamics, we introduce a
sampling–based technique for synthesizing controllers from
STL specifications. Our framework is not specific to traffic
networks, it can be viewed as a generalization of [6], where
STL properties over deterministic and random variables can
be handled even for piecewise affine systems, and we go
beyond the restriction to the very specific form of chance
constraints utilized in [6].

Our contributions in this paper are a threefold:

• Incorporating any stochastic signal in the framework of
STL.

• Synthesizing controllers that optimize for the expected
cost function, while the trajectories satisfy the stochastic
and deterministic STL properties.

• Providing a freeway traffic network example, where we
synthesize metering rates in the presence of stochastic
arrivals.

The organization of this paper is as follows. In section II
we provide an overview of the literature on ramp metering
techniques. We then define the dynamical systems framework
in section III. Section IV explains the fundamentals of
freeway systems. Section V is a review of STL framework.
Sections VI and VII present formulation of the problem and
control synthesis procedure. Finally, in sections VIII and,
IX we conclude our work by applying our method to an
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example of freeway traffic networks illustrating our approach
and description of future directions.

II. PRIOR WORK

The simplest possible ramp metering scheme is fixed–time
control [1], where vehicles are allowed to enter the freeway
in a fixed proportion of time intervals. In [7], a simple local
feedback controller for ramp metering is proposed where
local density is regulated around a set–point. Another class of
popular ramp controllers is the model predictive control laws,
seeking for the optimal ramp flows in a sense meaningful to
freeway traffic networks [8], [9], [10]. In these works, the
control either optimizes for a network performance measure
or forces the system to achieve a desired equilibrium point.

A modern view in synthesizing controllers for dynamical
systems including transportation networks, is to exploit pow-
erful tools of temporal logic in encoding desired properties
of systems [11], [2], [12]. In all these works, the assump-
tion is that the system is subject to deterministic bounded
uncertainties, and the control is synthesized for the worst
case uncertainty. However, in transportation networks such
an approach might frequently lead to infeasibility of control
as there exist arrival profiles for which the control cannot
satisfy the properties of interest, pointing us to the need for
finding control laws in a stochastic setting.

Among possible synthesis techniques, model predictive
control with temporal logic specifications has been success-
fully implemented [13], model predictive control with signal
temporal logic is shown to have a promising performance for
cyber–physical systems containing continuous states using
continuous-time, real-valued signals [14]. Recently, prob-
abilistic variants of signal temporal logic has been pro-
posed [11], [15]. In [11], a cost of interest is optimized
subject to chance constraints; whereas, the probability of
satisfying a STL property is maximized in [15]. Model
predictive control for systems with random uncertainties
requires solving stochastic optimization problems. Under
certain assumptions on the distributions, constraints and
cost functions, analytical solutions can be derived for some
specific classes of optimization problems [16]. However, in
general, stochastic optimization problems are hard to solve.
In order to be able to deal with the general class of stochas-
tic nonlinear optimizations, sampling–based techniques are
proven to be appropriate alternatives [17], [18].

III. HYBRID DYNAMICAL SYSTEMS

Consider a discrete time deterministic dynamical system
of the form:

xt+1 = f(xt, ut, wt), (1)

where xt ∈ X is a signal containing the continuous and
discrete states of the system, ut ∈ U is the signal of
continuous and possibly discrete control inputs, and wt ∈ W
contains the continuous uncertainties affecting system dy-
namics. X ⊆ Rnc×QS , U ⊆ Rmc×QI andW ⊆ Rrc , where
nc is the number of continuous states, mc is the number of
continuous control inputs, QS and QI are the set of discrete

states and inputs, and rc is the number of continuous uncer-
tainties respectively. Assuming that the initial condition of
the system is x0, a finite horizon run of the system is defined
as ξH(x0,u

H) = (x0, u0), (x1, u1), · · · , (xH−1, uH−1) for
horizon H . Here uH is a finite sequence of strategies
u0, . . . , uH−1 leading to the sequence (trajectory) ξH . The
notation for stochastic counterparts of these quantities will
be introduced later.

IV. TRAFFIC NETWORK DYNAMICS

In regards to designing traffic controllers, macroscopic
models are widely used since they deal with large-scale
properties of vehicular networks rather than intricacies of
lower impact on the wide-ranging performance of a network.
In this work, we use Asymmetric Cell Transmission Model
(ACTM) [9] which is known to be an appropriate represen-
tative of freeway traffic as it can capture merging of onramp
flows properly.

In this section, we present a description of ACTM. While
using ACTM, the assumption is that freeway is divided into
several segments such that each segment has at most one
onramp and one offramp as depicted in Figure 1. For the
sake of simplicity in model description, for now, assume that
the arrivals are deterministic. Suppose we have N segments,
for each segment j, segment states are defined as:
• nj : Number of vehicles stored in segment j, (density

of vehicles).
• lj : Number of vehicles queuing on the onramp corre-

sponding to the segment j.
The onramp flows decided by the controller are the vehicular
flows entering the freeway mainlines through its onramps:
• rj : Number of vehicles entering segment j through its

onramp.
In addition to onramp flows, we need to define mainline flow
at each segment:
• fj : Number of vehicles leaving segment j, moving

towards the downstream segment j + 1.
Note that since some of the segments might have offramps,
we need to define the exiting flow of segments:
• sj : Flow of vehicles leaving segment j through its

offramp.
Moreover, for each onramp, the exogenous entering flow is
denoted by dj and defined as:
• dj : Exogenous vehicular arrivals to the onramp belong-

ing to segment j.
The dynamics and update rule of segment states can be
obtained simply by the mass conservation law:

nj(k + 1) = nj(k) + fj−1(k) + rj(k)− fj(k)− sj(k),
(2)

lj(k + 1) = lj(k) + dj(k)− rj(k). (3)

Remark 1: For the very first upstream segment j = 1, the
upstream mainline flow f0 is an exogenous arrival flow.
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Fig. 1: Schematic of Freeway Segmentation

In order for equations (2) and (3) to represent traffic
dynamics, the mapping between fj’s and nj’s is required.
This mapping can be fully described provided that the
following parameters are defined and calibrated for each
segment:
• vj : Normalized free–flow speed in segment j.
• wj : Normalized congestion wave speed in segment j.
• βj : Split ratio of segment j, the fraction of vehi-

cles leaving segment j through its offramp: sj(k) =
βj (fj(k) + sj(k)).

• f̄j : Mainline capacity of segment j, defined as the
maximum number of vehicles that can leave segment
j.

• r̄j : Onramp capacity of segment j, defined as the
maximum number of vehicles that can leave the onramp
of segment j.

• n̄j : Jam density in segment j that is the maximum
number of vehicles that can be accommodated in the
mainline of segment j.

Remark 2: For the segments without an offramp, one
could assume βj = 0. Also, for the segments without
onramps, one could simply assume that ∀k, rj(k) = 0.
A standard approach taken in transportation engineering for
modeling this mapping is that the flow is related to the
densities and onramp flows by:

fj(k) = min{β̄j(k)vj (nj(k) + rj(k)) ,

wj+1(k) (n̄j+1 − nj+1(k)− rj+1(k)) , f̄j(k)},
(4)

where β̄j(k) = 1−βj(k). The first term inside the minimiza-
tion in equation (4) is interpreted as the number of vehicles
intending to leave segment j; while, the second term accounts
for available space downstream for accommodating upstream
flow.

The minimization in equation (4) implies that freeway
dynamics is piecewise affine, and; as a result, a nonlinear
system. In other words, the dynamics of each segment can
be viewed as a hybrid system of discrete modes (Free–Flow,
Congestion) with continuous linear dynamics in each discrete
mode. This nonlinearity leads to propagation of congestion to
upstream segments once a downstream segment is congested,
highlighting the important role of ramp metering in avoiding
congestion creation.

In the control design procedure for a given network, we
assume that the freeway is calibrated; hence, the quantities
vj , wj , f̄j , n̄j , βj are known and available to the controller.
It is proven that ACTM never predicts negative flows or den-
sities, making ACTM a reasonable model of traffic behavior.
For further details on derivation of ACTM, refer to [9].

V. SIGNAL TEMPORAL LOGIC

To synthesize controllers for hybrid dynamical systems
with continuous states and inputs, which is the case for
freeway networks, we use Signal Temporal Logic (STL) as
our formal modeling language. STL is a rich specification
language capable of encoding properties of continuous-
time, real-valued signals as opposed to Linear Temporal
Logic (LTL), which requires discrete abstraction of the
state space [19], [5]. STL specifications can be constructed
recursively using the following grammar:

ϕ ::= µ | ¬µ | ϕ ∧ ψ | ϕ ∨ ψ | G[a,b]ψ | ϕ U[a,b]ψ,

where µ is an atomic predicate of STL, ϕ and ψ are STL
formulae that can be constructed through Boolean operators
(negations ¬, conjunctions ∧, and disjunctions ∨), and tem-
poral operators such as G (globally) and U (until). One could
also define the eventually operator by F[a,b] = ¬G[a,b]¬ψ.
A signal ξ satisfies a STL predicate µ at time t, (ξ, t) |= µ,
if and only if there exists a real-valued function µ(ξ(t)) of
the signal ξ(t) such that µ(ξ(t)) > 0. With a slight abuse of
notation, µ represents both the predicate and the real-valued
function µ(ξ(t)). Similarly, (ξ, t) |= ϕ indicates that a signal
ξ satisfies the STL formula ϕ at time t. Satisfaction of STL
formulae is specified through the following:

(ξ, t) |= µ ⇐⇒ µ(ξ(t)) > 0

(ξ, t) |= ¬µ ⇐⇒ ¬((ξ, t) |= µ)

(ξ, t) |= ϕ ∧ ψ ⇐⇒ (ξ, t) |= ϕ ∧ (ξ, t) |= ψ

(ξ, t) |= ϕ ∨ ψ ⇐⇒ (ξ, t) |= ϕ ∨ (ξ, t) |= ψ

(ξ, t) |= G[a,b]ϕ ⇐⇒ ∀t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ

(ξ, t) |= F[a,b]ϕ ⇐⇒ ∃t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ

(ξ, t) |= ϕU[a,b]ψ ⇐⇒ ∃t′ ∈ [t+ a, t+ b], (ξ, t′) |= ψ

∧ ∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ
(5)

Note that there is a trade-off between the powerful capabili-
ties of STL for expressing temporal properties of continuous
signals and complexity of control synthesis from STL specifi-
cations. Among possible control synthesis approaches, model
predictive control with STL constraints has demonstrated
promising results [14], [20]. Although, providing global
optimality is not guaranteed, the MPC approach is shown
to perform well in practice.

VI. PROBLEM STATEMENT

Traditional STL allows representing predicates that are
real-valued functions of signals µ(ξ(t)) as described in
the previous section. However, there are various situations,
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where the STL specification is defined over stochastic sig-
nals. Such stochasticity can arise from empirical data or
uncertainty inherent as part of the system or environment.
Previous work has considered such uncertainty as part of
the specification through defining Probabilistic STL (PrSTL),
where the predicates are probabilistic chance constraints [6].
Although PrSTL provides an effective structure for introduc-
ing stochastic Bayesian classifiers as part of the specification,
it does not allow expressing general STL formulae with
stochastic predicates. We propose a framework for encoding
STL specifications over stochastic signals. Let Ξ(t) denote
a stochastic signal and M(Ξ(t)) be a real-valued function
of the signal Ξ(t). From now on, the upper case notations
refer to to the stochastic counterpart of the quantities we have
introduced so far. Then, we define satisfaction of a stochastic
predicate M as follows:

(Ξ, t) |= M ⇐⇒ M(Ξ(t)) ≥ 0 (6)

The rest of the operators including Boolean and tem-
poral operators are defined similar to STL semantics in
Equation (5), however over the stochastic predicate M . The
function M consists of deterministic variables as well as
stochastic signals.

Example 1: Let X(t) = [X1(t)X2(t)]> be the states of a
two dimensional system and u(t) be the control input, where
X1(t) is a normally distributed random variable and X2(t)
is a random variable whose randomness arises from the
randomness of X1. We let u(t) be a deterministic variable.
Then, we can define stochastic STL predicates over these
stochastic and deterministic signals e.g. M(ξ(t)) = X1(t) +
X2(t) + u(t) ≥ 0. Additionally we might be interested in
applying temporal operators over such specifications. For
instance, we can seek for satisfaction of Φ = G[0,5](X1(t)+
X2(t) + u(t) ≥ 0).

Note that if we only define deterministic variables, the
stochastic STL predicate will be equivalent to classic STL
specification, i.e, M(Ξ(t)) = µ(ξ(t)).

Our goal is to synthesize controllers for piecewise affine
dynamical systems subject to stochastic uncertainties with
complex stochastic STL specifications. Note that once
stochastic uncertainties propagate through piecewise affine
dynamics, the system states will also be stochastic quantities
whose distributions might be complicated; and, in general,
there might not exist a closed form distribution for the
randomness of system states. We propose a receding horizon
control optimizing the expected value of a cost function J ,
while satisfying STL properties of stochastic signals with a
desired probability of 1− ε. In our receding horizon control
design, we still consider control inputs to be deterministic
implying that we do not allow random inputs. Formally,
given a dynamical system defined in equation (1), with the
initial condition x0, and a stochastic STL specification Φ, we
would like to find a finite horizon strategy uH

∗:

uH
∗

= argmin
uH

E
[
J(ΞH(x0,u

H ,WH))
]

subject to Pr
(
ΞH(x0,u

H ,WH) |= Φ
)
≥ 1− ε,

(7)

where uH and WH denote vectors of deterministic control
inputs and stochastic uncertainties of a run for a horizon
H respectively. Note that E

[
J(ξH(x0,u

H ,WH))
]

is the
expected value of the cost function of interest, Φ is a
specification over the deterministic and stochastic signals,
and consisting of the dynamics of the system Φdyn as
well as the desired properties of the system Φprop. The
dynamics Φdyn is to verify that runs of the system obey
their underlying system evolution. (Note that specifications
containing possibly stochastic signals are denoted by Φ rather
than ϕ) As previously mentioned, in this work, we assume
the control inputs uH are deterministic quantities.

VII. CONTROL SYNTHESIS

In the receding horizon framework proposed in equa-
tion (7), ΞH(x0,u

H ,WH) and Φ are defined over de-
terministic and stochastic signals. Thus, the constraint
ΞH(x0,u

H ,WH) |= Φ cannot be encoded using the previ-
ously proposed techniques. As mentioned earlier, due to non-
linear dynamics of the system, even if the uncertainties have
simple distributions like normal distributions, their propaga-
tion through the dynamics of the system will lead to random
states with complicated distributions. Due to this complexity,
computing the expected value and chance constraints in
Equation VII is non–trivial. As an alternative, we propose
to solve the optimization problem in (VII) approximately.
Suppose the underlying distributions of uncertainties WH

are available [21]. We can use sample average approximation
technique [18], where we generate S(ε) samples of the vector
of random uncertainties, WH

i , i = 1, . . . , S(ε). Then, for
each realization of WH

i , we define:

Φi = Φ(x0,u
H ,WH

i ) i = 1, . . . , S(ε). (8)

The rest of the variables in Φi are defined as either stochastic
signals being affected by each realization of WH

i or de-
terministic variables that stay the same throughout different
realizations of the random variables. Assuming that all sam-
ples are equally weighted, we approximate the optimization
problem in equation (7) using this sampling based approach:

minimize
uH

1

S(ε)

S(ε)∑
i=1

J(ΞHi (x0,u
H ,WH

i ))

subject to ΞHi (x0,u
H ,WH

i ) |= Φi i = 1, · · · , S(ε),
(9)

where ΞHi (x0,u
H ,WH

i ) denotes the (deterministic) trajec-
tory resulting from the ith realization of random uncertainties
WH

i . One might argue that requiring the control uH to
satisfy Φi for all i’s might be too restrictive or conservative.
Nonetheless, the key point is that the smaller ε is (the higher
the probability of specification satisfaction is), the larger
the number of samples S(ε) is. Since we are dealing with
piecewise affine systems, and as for the class of problems
encountered in freeway ramp metering scenarios, we seek
for optimizing the expected value of linear functions of the
decision variables, we can use the bounds introduced in [18]
to decide on the minimum number of required samples.
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The practicality of sample average approximation arises
from the fact that in Equation (9), each realization of Φi
has an exact sampled value of the random variable WH

i ,
deterministic variables such as uH and other stochastic
signals affected by WH

i . Note that once WH
i is available,

other stochastic signals affected by WH
i will be deterministic

too. Thus, each Φi will be defined over only deterministic
quantities and can recursively be encoded as mixed integer
linear constraints as previously discussed in [14].

Example 2: Considering the STL formula in example 1,
Φ = G[0,5](X1(t) +X2(t) + u(t) > 0), we take S samples
of the random variable X1(t). Then, for each sample X1i(t),
there is a signal X2i(t) that is affected by the random
variable X1i(t). We let u(t) to be deterministic. Then, the
optimization problem in (9) will be:

minimize
uH

1

S

S∑
i=1

J(ξH(x0,u
H))

subject to G[0,5](X1i(t) +X2i(t) + u(t) > 0)

∀i = 1, · · · , S.

(10)

Here, we enforce the combination of stochastic and deter-
ministic signals satisfy a STL specification.
Freeway Ramp Metering: In freeways, a well-admired
cost function is

∑N
j=1

∑H
k=1 (nj(k) + lj(k)) representing

the total travel time of the vehicles in a horizon H . Thus, in
the presence of stochastic arrivals, we wish to optimize for
E
[
(
∑N
i=j

∑H
k=1 (Nj(k) + Lj(k)))

]
. The source of random

uncertainties in freeways is the very upstream mainline ar-
rival F0, and D =

[
D1 · · · DN

]T
, which is the vector of

exogenous arrivals of the network from the onramps. When
F0 is propagated through equation 4, vehicular densities and
flows, Nj’s and Fj’s, become random variables with compli-
cated distributions even with F0 having a normal distribution
which is due to the minimum operator in equation (4). This
is similar to the problem of computing the statistical max of
two arrival probability distributions [22] in statistic timing
analysis of circuits, where techniques for approximating the
moments of such distributions are proposed [23]. Using the
sampling average approximation in equation (9), we solve
for:

minimize
rH

1

S(ε)

S(ε)∑
i=1

 N∑
j=1

H∑
k=1

(Nji(k) + Lji(k))


subject to ΞHi (x0, r

H , F0i,Di) |= Φi i = 1, · · · ,M.
(11)

where Nji is the density in segment j resulting from ith

realization of arrivals. Note that in order to ensure that
the trajectories of the system ΞHi (x0, r

H , F0i,Di) obey its
dynamics, we need to introduce dynamics constraint for
each realization of samples. Since freeway dynamics is a
piecewise affine one, dynamics constraint are encoded by
mixed integer linear constraints. Any other desired temporal
property needed to be satisfied with a desired probability can
also be encoded as mixed integer linear constraints as in [14]
since each Φi is a deterministic specification.

Remark 3: In our current synthesis procedure, we assume
that at every time step of our receding horizon implemen-
tation, the current state which is the initial condition of the
optimization problem of Equation (VII), x0 is deterministi-
cally available which implies that one can measure the states
of the system at every time step. If one wishes to treat initial
conditions as random variables too, we need to update the
probability distributions over freeway states at every time
step. To this end, we can use particle filtering schemes as
in [24].

Solving mixed integer linear programs is NP-hard, which
incurs huge computational costs when dealing with high–
dimensional systems. On the other hand, freeways normally
contain many segments, making the proposed control scheme
impractical when considering a stretch of freeway. However,
it is shown that when there exist bottlenecks in freeways
(which is in fact when ramp metering is required), freeways
are divided into separated regions decoupled from each other
by bottlenecks [1]. This decoupling and large time scales of
freeways make our computations tractable to be implemented
for each region. On the other hand, our framework can be
utilized for compositional design of freeway controllers as
in [25], where the issue of scalability for large networks is
addressed by the notion of assume–guarantee contracts of
small subnetworks. Each subnetwork synthesizes its control
laws in line with the assumed temporal properties of adjacent
networks. In addition, using a convex subset of STL speci-
fications (under conjunctions and globally with convex cost
functions) we do not require constructing integer variables
for each constraint [6] which further reduces the complexity
of the optimization problem.

VIII. EXAMPLE

Consider two successive freeway segments with each
segment having an onramp. We assume the upstream segment
has an off–ramp as well. We wish to determine ramp flows
such that the expected total travel time of the two links
is minimized for a horizon of 10 time steps. We adopt
n̄1 = n̄2 = 400, v1 = v2 = 0.7, w2 = 1

6 , f̄1 = f̄1 = 60,
r̄1 = r̄1 = 30 and β1 = 1

4 as our network parameters. These
values are aligned with the illustrative examples in [2]. A
reasonable assumption on network arrivals is that they can be
modeled with Poisson Processes. This implies that at every
time step, vehicular arrivals are obtained through a Poisson
distribution, P (x, λ), where the average number of vehicles
entering the network at every time step is λ. Resultantly,
we assume F0, D1 and D2 are generated by P (x, λF0

),
P (x, λD1) and P (x, λD2) respectively. We choose λF0 to
be 40 and λD1 = λD2 to be 15. We assume that n1(0) =
n2(0) = 50.

An important temporal property required for freeway
traffic control is that vehicular queues on the onramps get
discharged infinitely often. As a result, an interesting tem-
poral property is that ramp queues get less than a threshold
infinitely often. For instnace, in this example, we desire
to encode that Pr

(
GF[0,5] l2 ≤ 10

)
≥ 0.5. Note that for

traffic networks, enforcing the controller to satisfy a temporal
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Fig. 2: Illustration of uncertainties considered by the MPC

property with high probability will lead to infeasibility
issues as occurrence of inconceivable arrivals is a frequent
scenario in traffic networks, highlighting the need to view
transportation networks in a stochastic setting rather than
deterministic systems subject to bounded uncertainties. As
Figure (2) shows, the controller predicts the uncertainties
which might exist for future time steps (the green area in
the plot), and, based on that, it synthesizes control laws such
that the queue on the second onramp is infinitely often less
than 10 while picking the control such that the average Total
Travel Time of the network is minimized.

IX. FUTURE WORK AND CONCLUSION

We illustrated a freeway ramp metering layout with ar-
rivals as uncertain parameters. We showed that using sample
average approximation techniques, we can encode Signal
Temporal Logic specifications over stochastic signals. Like
any research, our work is limited in many ways, the trade–
off between the number of samples and accuracy of our
algorithm is a direction to explore. We would like to define
weights proportional to the likelihood of observing a sample
leading to reduction in the number of samples. Similar ideas
are used in particle filtering schemes.

Despite these limitations, we are excited to pursue this
direction in other traffic control problems such as coordinat-
ing signalized intersections of urban arterials. In addition,
our framework smooths the way for taking variance of Total
Travel Time in rerouting strategies of networks. Moreover,
our work can be integrated with updating the belief on
distribution of arrivals as time passes so as to provide more
freedom to the control.
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