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Collaborative TransportCollaborative Block Stacking
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Objective:
Suck up as much dirt as possible
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1. Reach the goal

2. Avoid the obstacle

3. Keep the arm low



Collect Expert Demonstrations



Inverse Reinforcement Learning

Learn Human’s reward function based on 
Inverse Reinforcement Learning:

! "! #, %) ∝ exp(,! #, "! )

,! #, "! = %⏉ .(#, "ℋ)

[Ziebart’ 08] [Levine’10] 

"!∗ = max%!
,!(#, "!)



Learned Policy from IRL



Providing Demonstrations is Difficult!

“I  had  a  hard  time  controlling  the  robot”

“I  found  the  system difficult as someone who isn’t 
kinetically gifted”



Leverage different sources of 
data to learn reward functions: 

Demonstrations
Comparisons

Language Instructions
Physical Feedback
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"" or "#?

Most informative, diverse 
sequence of queries



Subject to   ! ∈ #
# = {!:! = Φ (! −Φ (" , (!, (" ∈ Ξ}

Actively synthesizing queries

max# min{2 1 − 4#(6) , 2 1 − 4$#(6) }

minimum volume removed

1& 2 = min(1, exp(6'2(7))Human update function[Sadigh et al. RSS17]
[Biyik et al.  CoRL18]
[Biyik et al. CDC19]
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Learning from Demonstration
Learning from Demonstrations 

& Preferences

[Palan et al., RSS19]



Integrating demonstrations and comparisons 
to efficiently learn reward functions

Key Idea:



Dynamically changing rewards

Integrating demonstrations and comparisons 
to efficiently learn reward functions

Easy active learning with info gain
[Basu et al. IROS19]

[Biyik et al., CoRL19]
[Biyik et al., submitted to RSS20]

Non-linear reward functions

Key Idea:

Other considerations:



Human Models 

• Data-efficient learning of reward functions 
with different sources of data

• What happens on the ends of the risk spectrum?









The light turns yellow for the 
human-driven (blue) car.

Will the blue car 
pass or stop?





https://www.pe.com/2013/06/09/murrieta-longer-yellow-lights-seen-as-traffic-camera-remedy/

https://www.pe.com/2013/06/09/murrieta-longer-yellow-lights-seen-as-traffic-camera-remedy/


Robots must recognize that people can 
behave suboptimally in risky scenarios
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rationality 
coefficient



most likely action

Baseline human models

(accelerating and running 
the yellow light)

Human Actions

Pr
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ab
ili

ty

optimal action



Risk-aware model: 
Cumulative Prospect Theory

Human Actions

Pr
ob

ab
ili

ty

optimal action

Rational

Risk-Aware

Noisily Rational

Amos Tversky and Daniel Kahneman, "Advances in prospect theory: Cumulative representation 
of uncertainty," Journal of Risk and Uncertainty 1992.

≠

!("!) =
exp(:,!&'( "! )

∑#∈%! exp(:,!&'( " )
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Risk-aware model: 
Cumulative Prospect Theory
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When do we behave 
suboptimally?



Autonomous driving task
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Experiment

Accelerate Stop

Learn model parameters



Modeling results
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Robots that plan with risk-
aware models



Collaborative cup stacking task
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Collaborative cup stacking task
Efficient but unstable tower Inefficient but stable tower

20105 * 0.2 = 21 >

• Awarded 20 points
• Never falls

• Awarded 105 points
• Remains upright 20% of the time
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Noisily rational robot
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We capture suboptimal human behavior using risk-
aware human models from cumulative prospect theory.

Key Idea:

[Kwon, et al. HRI20]

Erdem Biyik Minae Kwon
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!ℛ∗ = argmax;ℛ
(ℛ(*, !ℛ, !ℋ∗ (*, !ℛ))

!ℋ∗ *, !ℛ ≈ argmax;ℋ
(ℋ(*, !ℛ, !=)

Model !ℋ∗ as 
optimizing the human 
reward function (ℋ.

Interaction as a Dynamical System

Find optimal actions for 
the robot while 
accounting for
the human response !ℋ∗ .





Nth order Theory of Mind

Interactive tasks are usually not the same as playing chess!
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Conventions are low-dimensional shared representations that 
capture the interaction and can change over time.



What are conventions? 
Can robots directly learn conventions from interactions?

Can robots influence conventions?







• Assistive robotic arms are dexterous
• This dexterity makes it hard for users to 

control the robot

• How can robots learn low-dimensional 
representations that make controlling the 
robot intuitive?



Our Vision

Offline, expert demonstrations of high-dimensional motions



Our Vision

Learn low-dimensional latent representations for online control



Model 
Structure
(cVAE)
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User Study

• We trained on less than 7 minutes of kinesthetic demonstrations
• Demonstrations consisted of moving between shelves, pouring, stirring, 

and reaching motions
• We compared our Latent Action to the current method for assistive 

robotic arms (End-Effector)
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End-
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Latent 
Actions





Results



• We embedded personalized behaviors to latent spaces
• Formalized the properties these latent spaces should satisfy
• Learned from efficient amounts of data

Summary so far…

[Losey, et al., ICRA 2020]

Dylan Losey



Latent actions enable intuitive 
low-dimensional control…

…but is this enough for 
precise manipulation tasks?





Precise Manipulation

Cutting Scooping Yes
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Two different driving equilibria from years of repeated interactions
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