Human-CPS through the Lens of Learning and Control

Dorsa Sadigh

intelligent and interactive autonomous systems

this was that

iliad

Human-CPS through the Lens of Learning and Control

... to formalize and solve challenging problems of interaction with humans.

... to formalize and solve challenging problems of interaction with humans.

2) We need to design *computational models of human* behavior

Can we rely on low-dimensional statistics that capture highdimensional interactions?

... to formalize and solve challenging problems of interaction with humans.

2) We need to design *computational models of human* behavior

Can we rely on low-dimensional statistics that capture high-dimensional interactions?

3) We spend a lot of effort learning what humans want or do... ... but humans constantly *change*

What can learning and control do?

... to formalize and solve challenging problems of interaction with humans.

2) We need to design *computational models of human* behavior

Can we rely on low-dimensional statistics that capture high-dimensional interactions?

3) We spend a lot of effort learning what humans want or do... ... but humans constantly *change*

What can learning and control do?

Teach through demonstrations or comparisons Human Teacher

Teach through demonstrations or comparisons

Teleoperate the robot

Human Models

- Data-efficient learning of reward functions with different sources of data
- What happens on the ends of the risk spectrum?

Human Models

- Data-efficient learning of reward functions with different sources of data
- What happens on the ends of the risk spectrum?

Conventions

• What low dimensional representations are necessary when collaborating with humans?

Objective: Suck up as much dirt as possible

- 1. Reach the goal
- 2. Avoid the obstacle
- 3. Keep the arm low

Collect Expert Demonstrations

Inverse Reinforcement Learning

Learn Human's reward function based on Inverse Reinforcement Learning:

$$P(a_H|s,w) \propto \exp(R_H(s,a_H))$$

$$R_H(s,a_H) = w^{\top} \phi(s,a_{\mathcal{H}})$$

$$a_H^* = \max_{a_H} R_H(s, a_H)$$

Providing Demonstrations is Difficult!

"I had a hard time controlling the robot"

"I found the system difficult as someone who isn't kinetically gifted"

Leverage different sources of data to learn reward functions: **Demonstrations** Comparisons Language Instructions **Physical Feedback**

 ξ_A or ξ_B ? \bigcirc

Actively synthesizing queries

$$\max_{\varphi} \min\{\mathbb{E}[1 - f_{\varphi}(w)], \mathbb{E}[1 - f_{-\varphi}(w)]\}$$

Subject to $\varphi \in \mathbb{F}$
 $\mathbb{F} = \{\varphi: \varphi = \Phi(\xi_A) - \Phi(\xi_B), \xi_A, \xi_B \in \Xi\}$

[Sadigh et al. RSS17] [Biyik et al. CoRL18] [Biyik et al. CDC19] Human update function $f_{\varphi}(\mathbf{w}) = \min(1, \exp(I_t \mathbf{w}^{\mathsf{T}} \varphi))$

Preferences:

Easier and more accurate to use – but *gives one bit of information*.

 \checkmark

 \checkmark

Learning from Demonstrations & Preferences

[Palan et al., RSS19]

Key Idea:

Integrating demonstrations and comparisons to efficiently learn reward functions

Integrating demonstrations and comparisons to efficiently learn reward functions

Other considerations:

Dynamically changing rewards

Non-linear reward functions

Easy active learning with info gain

[Basu et al. IROS19] [Biyik et al., CoRL19] [Biyik et al., submitted to RSS20]

Human Models

- Data-efficient learning of reward functions with different sources of data
- What happens on the ends of the risk spectrum?

The light turns yellow for the human-driven (blue) car.

Will the blue car pass or stop?

Robots must recognize that people can behave suboptimally in risky scenarios

optimal action Probability $a_H^* = \arg \max_{a_H} R_H(a_H)$ 0

Amos Tversky and Daniel Kahneman, "Advances in prospect theory: Cumulative representation of uncertainty," Journal of Risk and Uncertainty 1992.

$$R_{H}^{CPT}(a_{H}) = p^{(1)}R_{H}^{(1)}(a_{H}) + \dots + p^{(k)}R_{H}^{(k)}(a_{H})$$

$$R_{H}^{CPT}(a_{H}) = p^{(1)}R_{H}^{(1)}(a_{H}) + \dots + p^{(k)}R_{H}^{(k)}(a_{H})$$

<u>III.</u>
Risk-aware model: Cumulative Prospect Theory

Risk-aware model: Cumulative Prospect Theory

Risk-aware model: Cumulative Prospect Theory

$$R_{H}^{CPT}(a_{H}) = p^{(1)}R_{H}^{(1)}(a_{H}) + \dots + p^{(k)}R_{H}^{(k)}(a_{H})$$

When do we behave suboptimally?

Autonomous driving task

Autonomous Car

Human-Driven Car

Study results

Study results

High Risk: light turns red 95% of time Low Risk: light turns red 5% of time

N=30

N=30 High Risk Low Risk *(light turns red frequently)* (light turns red infrequently) Distribution Accelerate 15 Stop 60% 55% 0 Majority of people preferred

the suboptimal action!

Study results

Experiment

Modeling results

Modeling results

N=30

lower is better

Modeling results

lower is better

Robots that plan with riskaware models

Efficient but unstable tower

- Awarded 105 points
- Remains upright 20% of the time

Inefficient but stable tower

- Awarded 20 points
- Never falls

Efficient but unstable tower

- Awarded 105 points
- Remains upright 20% of the time
 105 * 0.2 = 21

Inefficient but stable tower <u>H</u>

- Awarded 20 points
- Never falls

20

We capture *suboptimal* human behavior using riskaware human models from cumulative prospect theory.

Erdem Biyik

Minae Kwon

[Kwon, et al. HRI20]

Human Models

- Data-efficient learning of reward functions with different sources of data
- What happens on the ends of the risk spectrum?

Human Models

- Data-efficient learning of reward functions with different sources of data
- What happens on the ends of the risk spectrum?

Conventions

• What low dimensional representations are necessary when collaborating with humans?

Interaction as a Dynamical System

$$a_{\mathcal{R}}^* = \arg\max_{u_{\mathcal{R}}} R_{\mathcal{R}}(s, a_{\mathcal{R}}, a_{\mathcal{H}}^*(s, a_{\mathcal{R}}))$$

Find optimal actions for the robot while accounting for the human response $a_{\mathcal{H}}^*$.

Model $a_{\mathcal{H}}^*$ as optimizing the human reward function $R_{\mathcal{H}}$.

 $a_{\mathcal{H}}^*(s, a_{\mathcal{R}}) \approx \operatorname*{argmax}_{u_{\mathcal{H}}} R_{\mathcal{H}}(s, a_{\mathcal{R}}, a_{H})$

Interactive tasks are usually not the same as playing chess!

Shared Representation (conventions)

Conventions are low-dimensional shared representations that capture the interaction and can change over time.

What are *conventions*?

Can robots directly *learn* conventions from interactions? Can robots *influence* conventions?

Source: U.S. Census Bureau, Social Security Administration Supplement to the 2014 Panel of the Survey of Income and Program Participation, September-November 2014.

- Assistive robotic arms are *dexterous*
- This dexterity makes it hard for users to *control* the robot
- How can robots *learn* low-dimensional representations that make controlling the robot intuitive?

Our Vision

Offline, expert demonstrations of *high-dimensional* motions

Our Vision

Learn *low-dimensional* latent representations for online control

Conditioned. The meaning of the latent action *z* depends on the current state *s*. $\hat{a} = \phi(z, s)$

Controllable. The robot can move between states in the dataset.

Consistent. The same *z* causes the robot to behave similarly nearby.

Scalable. Larger latent actions cause larger changes in the state.

Conditioned. The meaning of the latent action *z* depends on the current state *s*. $\hat{a} = \phi(z, s)$

Controllable. The robot can move between states in the dataset. *given* (s, s') $\exists z \in \mathcal{Z}$ $s.t. s' = \mathcal{T}(s, \phi(z, s))$

Consistent. The same *z* causes the robot to behave similarly nearby.

Scalable. Larger latent actions cause larger changes in the state.

Conditioned. The meaning of the latent action *z* depends on the current state *s*. $\hat{a} = \phi(z, s)$

Controllable. The robot can move between states in the dataset. given (s, s') $\exists z \in \mathbb{Z}$ $s.t. s' = \mathcal{T}(s, \phi(z, s))$

Consistent. The same *z* causes the robot to behave similarly nearby. $d_M(\mathcal{T}(s_1, \phi(z, s_1)), \mathcal{T}(s_2, \phi(z, s_2))) < \epsilon \quad when \quad ||s_1 - s_2|| < \delta$

Scalable. Larger latent actions cause larger changes in the state.

Conditioned. The meaning of the latent action *z* depends on the current state *s*. $\hat{a} = \phi(z, s)$

Controllable. The robot can move between states in the dataset. given (s, s') $\exists z \in \mathbb{Z}$ $s.t. s' = \mathcal{T}(s, \phi(z, s))$

Consistent. The same *z* causes the robot to behave similarly nearby. $d_M(\mathcal{T}(s_1, \phi(z, s_1)), \mathcal{T}(s_2, \phi(z, s_2))) < \epsilon \quad when \quad ||s_1 - s_2|| < \delta$

Scalable. Larger latent actions cause larger changes in the state. $\|s - \mathcal{T}(s, \phi(z, s))\| \to \infty \quad as \quad \|z\| \to \infty$

User Study

- We trained on less than 7 *minutes* of kinesthetic demonstrations
- Demonstrations consisted of moving between shelves, pouring, stirring, and reaching motions
- We compared our *Latent Action* to the current method for assistive robotic arms (*End-Effector*)

Latent Action

Add Flour & Return

Add Apple and Stir

Summary so far...

- We *embedded* personalized behaviors to latent spaces
- *Formalized* the properties these latent spaces should satisfy
- Learned from *efficient* amounts of data

Dylan Losey [Losey, et al., ICRA 2020]

Latent actions enable intuitive low-dimensional control...

...but is this enough for *precise* manipulation tasks?

Precise Manipulation

Latent Actions + Shared Autonomy

Start

Start

No Assistance

Latent Actions + Shared Autonomy

Control Goal Control Goal

No Assistance

Latent Actions + Shared Autonomy

Control Preference Control Preference

No Assistance

Human Models

- Data-efficient learning of reward functions with different sources of data
- What happens on the ends of the risk spectrum?

Conventions

• What low dimensional representations are necessary when collaborating with humans?

1) There is an *opportunity* for learning and control

... to formalize and solve challenging problems of interaction with humans.

2) We need to design *computational models of human* behavior

Can we rely on low-dimensional statistics that capture high-dimensional interactions?

1) There is an *opportunity* for learning and control

... to formalize and solve challenging problems of interaction with humans.

2) We need to design *computational models of human* behavior

Can we rely on low-dimensional statistics that capture high-dimensional interactions?

3) We spend a lot of effort learning what humans want or do... ... but humans constantly *change*

What can learning and control do?

Two different driving equilibria from years of repeated interactions

iliad

intelligent and interactive autonomous systems

1) There is an *opportunity* for learning and control

... to formalize and solve challenging problems of interaction with humans.

2) We need to design *computational models of human* behavior

Can we rely on low-dimensional statistics that capture high-dimensional interactions?

3) We spend a lot of effort learning what humans want or do... ... but humans constantly *change*

What can learning and control do?