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-CPS through the Lens of LearI{ing and Control

Dorsa Sadigh
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intelligent and interactive autonomous systems










Human-CPS through the Lens of Learning and Control
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1) There is an opportunity for learning and control

... to formalize and solve challenging problems of interaction with humans.
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1) There is an opportunity for learning and control

... to formalize and solve challenging problems of interaction with humans.

2) We need to design computational models of human behavior

Can we rely on low-dimensional statistics that capture high-
dimensional interactions?
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1) There is an for learning and control

... to formalize and solve challenging problems of interaction with humans.

2) We need to design behavior

Can we rely on low-dimensional statistics that capture high-dimensional
interactions?

3) We spend a lot of effort learning what humans want or do...
... but humans constantly

What can learning and control do?



Teach through
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Teach through
demonstrations or Teleoperate the robot

Comparisons
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Human Models

* Data-efficient learning of reward functions
with different sources of data

* What happens on the ends of the risk spectrum?




Human Models

* Data-efficient learning of reward functions
with different sources of data

* What happens on the ends of the risk spectrum?

Conventions

* What low dimensional representations
are necessary when collaborating with
humans?










Objective:
Suck up as much dirt as possible
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Put out dirt\> &
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Put out dirt\> &
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1. Reach the goal
2. Avoid the obstacle

3. Keep the arm low
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Collect Expert Demonstrations
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Inverse Reinforcement Learning

Learn Human’s reward function based on
Inverse Reinforcement Learning;:

P(ayls,w) x exp(Ry (s, ay))

Ry(s,ay) = w! (s, as)

ay = maxRy(s,ay)
ag

[Ziebart’ 08] [Levine’10]
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Learned Policy from IRL
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Providing Demonstrations is Difficult!
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Leverage different sources ot
data to learn reward functions:
Demomnstrations
Comparisons

Language Instructions
Physical Feedback
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Most informative, diverse
sequence of queries




Actively synthesizing queries

minimum volume removed

N
4 A

qu)z-lx min{IE[l — f(p(W)], E[l — f—(p(W)]}

Subjectto ¢ € F
F={p:p=(y) —DP(p), ¢4 ¢p €EE}

[Sadigh et al. RS517] 1 — mi T
Bryiloot al. CoRL1S] Human update function  f,(w) = min(1, exp(I;w' ¢))

[Biyik et al. CDC19]
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Preferences:
Easier and more accurate to use — but gives one bit of information.
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Demonstrations:
Rich and informative — but noisy and inaccurate.
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Learning from Demonstrations

Learning from Demonstration & Preferences
§ Ty ——————— - % — = , S—

|||m||||m‘"umuu
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[Palan et al., RSS19]



=0 Integrating demonstrations and comparisons
€ to efficiently learn reward functions



Key Idea:

o o Integrating demonstrations and comparisons
'3 . .
S to efficiently learn reward functions
7

Other considerations:

AN Dynamically changing rewards

|J\ Non-linear reward functions
n®
kM

Easy active learning with info gain
[Basu et al. IROS19]

[Biyik et al., CoRL19]
[Biyik et al., submitted to RSS20]



Human Models

* Data-efficient learning of reward functions
with different sources of data

* What happens on the ends of the risk spectrum?













The light turns yellow for the
human-driven (blue) car.

Will the blue car
pass or stop?









https://www.pe.com/2013/06/09/murrieta-longer-yellow-lights-seen-as-traffic-camera-remedy/

Robots must recognize that people can
behave suboptimally in risky scenarios



Baseline human models
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ay = argmax Ry (ay) %
ay <
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Human Actions



Baseline human models

1 optimal action
Loy
ay = argmax Ry (ay) %
ay <
2
A~
0

Human Actions
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Baseline human models [tg — EJ

1 optimal action

Rational

P

ap = argmax Ry(ay) 5
ay a
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Human Actions
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Baseline human models

1 optimal action
Rational
Noisily Rational

2
P(ay) = exp(ORy(ay)) =
H) — <
ZaEAH exp(6Ry(a)) %
9

0

Human Actions
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Baseline human models

1 optimal action
| | Rational
ZZZ?f?cailgl?’:\ Noisily Rational

Play) = exp(ORy(ay)) %
Qiaeay eXp(ORy(a)) £
=
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Human Actions



Baseline human models
1

optimal action most likely action

(accelerating and running
the yellow light)

Probability

Human Actions



Risk-aware model: {ﬁ* e 'm

Cumulative Prospect Theory
1

optimal action

Rational
Noisily Rational

exp(6 RISPT (ay))
ZaEAH exp(engPT (a))

P(ay) =

Probability

Risk-Aware

0

Amos Tversky and Daniel Kahneman, "Advances in prospect theory: Cumulative representation
of uncertainty," Journal of Risk and Uncertainty 1992. Hum an Actions




Risk-aware model:
Cumulative Prospect Theory

Ry (ay) = p@RP (ay) + -+ p®ORY (ay)
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Risk-aware model:
Cumulative Prospect Theory

k
RS (ay) = p VR (ag) + - + p ™Ry (ay)
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Cumulative Prospect Theory

Transform

Reward

Bl True Reward
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Risk-aware model:
Cumulative Prospect Theory

k
RS (ay) = pDRy (ap) + -+ pPRE? (ay)



Risk-aware model:
Cumulative Prospect Theory

y =0.5

pY
(¥ + (1 —py)i/y

w(p) = y €[0,1]

Transform

BB Risk-Aware
P True Probability

0 Probability 1.0



Risk-aware model:

Cumulative Prospect Theory

Transform

y =0.5

underweighting

BB Risk-Aware
P True Probability

Probability 1.0

w(p) =

pY

(¥ + (1 — I

y €[0,1]



Risk-aware model:
Cumulative Prospect Theory

Transform

y =0.5

v

/ L] (]
L~ overweighting

underweighting

BB Risk-Aware
B True Probability

Probability

1.0

w(p) =

p)’

(¥ + (1 — I

y €[0,1]



Risk-aware model:
Cumulative Prospect Theory

k
RS (ay) = pDRy (ag) + - + pPRy? (ay)



When do we behave @
suboptimally?



Autonomous driving task

. Autonomous Car Human-Driven Car




Study results
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High Risk
(light turns red frequently)
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a " Stop
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High Risk: light turns red 95% of time
Low Risk: light turns red 5% of time



Study results @

N=30
High Risk Low Risk
(light turns red frequently) (light turns red infrequently)

-

C
= Accelerate

— 151
O Stop
=

-~
.Z} O 0
s 60% 55%

0- , :

\ Majority of people preferred

the suboptimal action!



Experiment

/ Learn model parameters \

r—=—=-1
| I
| I
| I

\ Accelerate




Modeling results



Modeling results
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log KL(true | | predicted)

|
w
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High Risk

’-

|
-
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(light turns red frequently)

lower is better

W

2 Noisy Rational
" Risk-Aware



Modeling results
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N=30

High Risk

(light turns red frequently)

lower is better

Low Risk

(light turns red infrequently)

o

B Noisy Rational
~ Risk-Aware



Robots that plan with risk-
aware models
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Collaborative cup stacking task
e §
|




Collaborative cup stacking task

Efficient but unstable tower

* Awarded 105 points
« Remains upright 20% of the time




Collaborative cup stacking task

Inefficient but stable tower

Y
v

* Awarded 20 points
* Never falls




Collaborative cup stacking task

Efficient but unstable tower @ Inefficient but stable tower JQL

PR
;

« Awarded 105 points * Awarded 20 points
« Remains upright 20% of the time « Never falls

105 * 0.2 =21 > 20



Noisily rational robot
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Noisily rational robot




Noisily rational robot




Risk-aware robot




Risk-aware robot




Risk-aware robot




Risk-aware robot




Key Idea:

We capture suboptimal human behavior using risk-
aware human models from cumulative prospect theory.

\\{%

Erdem Biyik Minae Kwon

-y

[Kwon, et al. HRI20]
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Human Models

* Data-efficient learning of reward functions
with different sources of data

* What happens on the ends of the risk spectrum?

Conventions

* What low dimensional representations
are necessary when collaborating with
humans?










Nth order Theory of Mind



Nth order Theory of Mind
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Nth order Theory of Mind
O O
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Interaction as a Dynamical System

ap = argn&ax Rp(s,an,as:(s,an))
R

Find optimal actions for
the robot while
accounting for

Model a;, as the human response a;.

optimizing the human @

reward function Ry, .

as (s, azp) = argmax Ry (s, a9, 05)
H






Nth order Theory of Mind

Interactive tasks are usually not the same as playing chess!









Shared Representation

(conventions)







Shared Representation

(conventions)




are low-dimensional shared representations that
capture the interaction and can change over time.



What are conventions?

Can robots directly learn conventions from interactions?

Can robots influence conventions?



Prevalence of Difficulty Performing ADLs and IADLs in Adults 18 Years and Older With One or
More Selected Symptoms That Interfere With Everyday Activities: 2014

ADL

Getting infout of bed/chair |GGG
Bathing |
Oressing |
Getting around inside the home [IIIIENEGEGEGE
Toileting N
Eating |
IADL
Going outside to run errands
Doing light housework
Handling money
Preparing meals
Taking medication
sing the telephone

o 0 20 30 40 S0 60 70

Percent

Source: US. Census Bureau, Socal Security Adminsstration Supplement to the 2014 Panel of the Survey of Income and Program

Participation. September-November 2014
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Latent Action

+1

e Assistive robotic arms are

 This dexterity makes it hard for users to
the robot

e How can robots low-dimensional
representations that make controlling the
robot intuitive?



Our Vision

Offline, expert demonstrations of high-dimensional motions



Our Vision

Learn low-dimensional latent representations for online control
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action
latent & ~—

action
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Structure (S, a) @
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Learning Intuitive Latent Actions

. The meaning of the latent action z depends on the
current state s. a=¢(zs)



Learning Intuitive Latent Actions

. The robot can move between states in the dataset.
given (s, s') dze Z s.t. 8 =T (s,9(z9))



Learning Intuitive Latent Actions

. The same z causes the robot to behave similarly nearby.
dy (T (s1,90(z,81)), T (s2,0(2,89))) <€ when |s1—ss| <9



Learning Intuitive Latent Actions

. Larger latent actions cause larger changes in the state.
Is =T (s,¢(z5))[ =00 as |z]| = o0



state-action

pairs
e ~N \ reconstructed
action
latent y
Model action
Structure (5/ a) @
cVAE q
( ) b(z, s) a
) ié'@
\ k_)
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action
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latent y —
action

Model

Structure
(cVAE)
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P(z, 5)

user input
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User Study

» We trained on less than 7 minutes of kinesthetic demonstrations

* Demonstrations consisted of moving between shelves, pouring, stirring,
and reaching motions

* We compared our Lafent Action to the current method for assistive
robotic arms (End-Effector)












4x Speed (1) add CEES

S
B

End-Effector [Latent Action



End-Effector

Add Flour & Return Add Apple and Stir

Add Eggs & Recycle




Summary so far...

* We embedded personalized behaviors to latent spaces
» Formalized the properties these latent spaces should satisty

* Learned from efficient amounts of data

Dylan Losey
[Losey, et al., ICRA 2020]



Latent actions enable intuitive
low-dimensional control...

...but is this enough for
manipulation tasks?






Precise Manipulation

Cutting Scooping Yes




Latent Actions + Shared Autonomy
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Latent Actions + Shared Autonomy
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Latent Actions + Shared Autonomy
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No Assistance Shared Autonomy



Human Models

* Data-efficient learning of reward functions
with different sources of data

* What happens on the ends of the risk spectrum?

Conventions

* What low dimensional representations
are necessary when collaborating with
humans?
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Two different driving equilibria from years of repeated interactions
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1) There is an for learning and control

... to formalize and solve challenging problems of interaction with humans.

2) We need to design behavior

Can we rely on low-dimensional statistics that capture high-dimensional
interactions?

3) We spend a lot of effort learning what humans want or do...
... but humans constantly

What can learning and control do?



