
CS 333: Safe and Interactive Robotics Fall 2017

Lecture 2: Motion Planning, Trajectory Optimization
Scribes: Maxime Bouton, Keven Wang, Mingyu Wang

2.1 Motion Planning: Sampling Based Methods

The sampling based methods require:

• A collision checker: that checks if point in configuration space q collides with any obstacles Cobs:

γ(q) =

{
1 i f q ∈ Cobs

0 otherwise

• A simple planner: that is fast, but not complete nor optimal.

B(q1, q2) =

{
A path f romq1 to q2

Failure

Sampling based methods are probabilistically complete. In the case we don’t know the entire configuration
space, we plan in horizon where we know the collision checker function.

2.1.1 Probabilistic Roadmaps (PRM)

In the PRM graph construction phase, random points are sampled from the configuration space, with
only points lying in the free configuration space C f ree kept. A local planner connects the sampled points
to neighbors. A graph search algorithm attempts to find a path between start point qs and end point qg in
the configuration space. The above steps are repeated until a path is found between qs and qg.

Algorithm:

Given qs, qg
while qs, qg not in the same connected component do

Sample M points in configuration space
Remove points that collides with obstacles using collision checker γ
Connect new points to existing points using fast planner B

end

2.1.2 Rapidly-exploring Random Trees (RRT)

Rapidly exploring random trees algorithm is similar to Probabilistic Roadmap, except that it only samples
one point in C f ree at a time. The sampling is done with bias toward area not yet sampled in the space.
The sampled point is then connected to connected groups Cs or Cg using simple planner. Initially Cg =

2-1



2-2 Lecture 2: Motion Planning, Trajectory Optimization

qg, Cs = qs. One variant of RRT algorithm, Bi-directional RRT, attempts to build tree from both start and
end of the configuration space. RRT is fast and scalable, but is not optimal given sampled nodes.

Algorithm:

Cg = qg
Cs = qs
while qs, qg not in the same connected component do

Sample one point in C f ree space
Connect point to closest point in Cg or Cs using simple planner

end

2.1.3 Rapidly-exploring Random Trees Star (RRT*)

RRT* is the same as vanilla RRT, except that it include post-processing step after each iteration:

• Parent selection (figure 2.1): examine neighboring nodes (in radius according to some hyper param-
eter), if becomes parent, would result in shorter path

• Rewiring (figure 2.2): drop existing edge, if going through new node results in shorter path

Figure 2.1: Parent selection step

Figure 2.2: Rewiring step

RRT* is optimal given sample nodes.

Algorithm:

Cg = qg
Cs = qs
while qs, qg not in the same connected component do

Sample one point in C f ree space
Connect point to closest point in Cg or Cs using simple planner
Parent selection
Rewiring

end



Lecture 2: Motion Planning, Trajectory Optimization 2-3

2.2 Trajectory Optimization

Trajectory is a function which maps time to C-space configurations

ξ : [0, T]→ C, ξ ∈ Ξ,

where Ξ is a set of all possible trajectories.

To distinguish different trajectories, we further define a cost functional U that maps any trajectory to a
non-negative value:

U : Ξ→ R+

Our goal is to optimize U .

Some example factors to consider when constructing the cost functionals are:

• path length

• efficiency

• obstacle avoidance

• uncertainty reduction

• predictability

• legibility/ intent expression

• human comfort

• naturalness

To better understand the trajectory optimization problem, let’s take a look at the worlds where the robot,
the robot’s configuration and the trajectory live in. The robot configuration q, is a point in C-space with
dimension d, where d is the degree of freedom of the robot. R(q) maps the configuration of a robot to a
set of points where the robot occupies in the world space (typically R2 or R3). A trajectory, ξ, is a timed
path in robot’s configuration space. Ξ is a space of trajectory functions and thus is ∞-dimensional.

$

%

ℛ(3)

W(ℝ6/ℝ8)

&9

&6

3:

3;<space - = dim

>

>∗
Ξspace -∞ dim

Trajectory Optimization is the process of finding an optimal trajectory ξ∗:

ξ∗ = arg min
ξ∈Ξ
U [ξ]

s.t. ξ(0) = qs

ξ(T) = qg



2-4 Lecture 2: Motion Planning, Trajectory Optimization

One method to solve this trajectory optimization problem is Gradient Descent:

ξi+1 ← ξi −
1
α
∇ξU (ξi)

To get an intuition why this works, consider we have a trajectory ξi and want to minimize U [ξ]:

ξi+1 = arg min
ξ∈Ξ
{U [ξi] +∇ξiU

T(ξ − ξi) +
1
2

α‖ξ − ξi‖2}

The first two terms approximate U [ξ] by first order Taylor expansion, and the third term penalizes if ξ is
far away from ξi. Since the right-hand side is a convex function, we take the gradient of the right-hand
side and set it to zero

0 +∇ξiU + α(ξ − ξi) = 0

Solve the above equation, we get

ξ = ξi −
1
α
∇ξU (ξi),

which is the same equation as Gradient Descent.

Calculus Review:
In trajectory optimization, we care about vector calculus and multivariable calculus because the tra-
jectory and the the cost can be represented as vector valued function and multivariable functions
respectively.

ξ :[0, T] −→ C

ξ(t) = q =

q1(t)
...

qd(t)


where d is the dimension of the configuration space C. ξ is represented as a vector valued function.
If we discretize time we can also write:

ξ =

 q1
...

qN


where N is the number of time steps. Then U (ξ) = U (q1, . . . , qN), it is a multivariable function.

Note: If the time is not discretized, U is a different object called a functional (”function of functions”).

Derivatives and Gradients:

For single variable functions f : R→ R the derivative is defined as follows:

f ′(x) = lim
ε→0

f (x + ε)− f (x)
ε

Example:

f (x) = 2x

f ′(x) = lim
ε→0

2(x + ε)− 2x
ε

= 2



Lecture 2: Motion Planning, Trajectory Optimization 2-5

If f is a multivariable function: f (x1, . . . , xn) : Rn → R, we define the partial derivatives with respect
to each variable xi to be:

∂ f (x1, . . . , xn)

∂xi
= lim

ε→0

f (x1, . . . , xi + ε, . . . , xn)− f (x1, . . . , xn)

ε

The gradient of f is then given by ∇x1,...,xn f (x1, . . . , xn) =


∂ f
∂x1
...

∂ f
∂xn


Example:

f (x, y) = 2x + y + xy
∂ f
∂x

= 2 + y,
∂ f
∂y

= 1 + x

∇x,y f =

[
2 + y
1 + x

]

For vector valued function f : R → Rn, the derivative is just the derivative of the components:

f (x) =

 f1(x)
...

fn(x)

 f ′(x) =

 f ′1(x)
...

f ′n(x)


When a function is multivariable and vector valued: f : Rn → Rm we define the Jacobian (of size
m× n):

d f
d(x1, . . . , xn)

= J =


∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

. . . ∂ fm
∂xn



Note: For linear functions f such that f (x1, . . . , xn) = Ax where x =

x1
...

xn

 Then A is the jacobian of

f evaluated at x.

Example:

f (x, y) =
[

2x + y
y

]
J =

[
2 1
0 1

]

Hilbert Space:



2-6 Lecture 2: Motion Planning, Trajectory Optimization

The space Ξ of all the trajectories is a Hilbert Space. It is a complete vector space with an inner
product defined over it. The inner product can be euclidean:

ξ1, ξ2 ∈ Ξ, 〈ξ1, ξ2〉 =
∫ T

0
ξ1(t)>ξ2(t)dt

An inner product verifies the following properties:

• Symmetry: 〈ξ1, ξ2〉 = 〈ξ2, ξ1〉

• Linearity:

〈ξ1 + ξ2, ξ3〉 = 〈ξ1, ξ3〉+ 〈ξ2, ξ3〉
〈aξ1, ξ2〉 = a〈ξ1, ξ2〉 where a ∈ R

• Positive Definite:

∀ξ 〈ξ, ξ〉 ≥ 0 (2.1)
〈ξ, ξ〉 = 0 if and only if ξ = 0 (2.2)


