
CS 333: Safe and Interactive Robotics Fall 2017

Lecture 1: Motion Planning
Scribes: Laura Blumenschein and Charles Lu

1.1 Overview

This lecture covers some fundamentals in the field of motion planning, or finding a sequence of motions
to allow a robot to achieve a desired position under constraints, as well as some of the standard algorithms
for solving the motion planning problem.

The major topics we will cover are:

1. Configuration space

2. Motion planning problem formulation

3. Motion planning techniques

1.2 Configuration Space

The configuration space is an important foundation to understand when beginning to talk about motion
planning problems. A configuration, q, is a mathematical quantity that completely defines a robot’s
position and pose. Configuration space then, represented mathematically by C, is the set of all possible
configurations, q ∈ C.

World space, denoted by W, is distinct from configuration space and is R2 or R3 for the majority of
problems. A mapping of the robot into the world frame is:

R : C → P(W) R(q) = {x | x ∈W, x ∈ robot} (1.1)

where P(W) is the power set, or set of all subsets, of the world frame. Essentially, the function R takes a
robot’s configuration and gives the set of points occupied by the robot in the world frame.

Figure 1.1: Example robots with various configuration spaces

1-1



1-2 Lecture 1: Motion Planning

The configuration space is highly dependent on the robot and its degrees of freedom. Some examples of
robots can be seen in Fig. 1.1:

• Robot A: Translation of a robot in R2, the configuration is q : (x, y) and configuration space C = R2

• Robot B: Translation and rotation of a robot in R2, the configuration is q : (x, y, θ) and configuration
space C = R2 × SO(2)

• Robot C: Rigid body motion of a robot in R3, the configuration is q : (x, y, z, α, β, γ) and configuration
space C = R3 × SO(3) = SE(3)

• Robot D: A two degree of freedom robotic manipulator in R2, the configuration is q : (θ1, θ2) and the
configuration space C = SO(2)× SO(2)

1.2.1 Forward and Inverse Kinematics

Forward kinematics (FK) refers to the task of mapping a configuration q to a point in the world. Specifi-
cally, we define a function φ : C → W, i.e. φ(q) = x where q ∈ C and x ∈ W. φ is defined for a specific
point on a robot; for instance, in the example of the robot with a gripper and two joints, we might have φ
map the robot’s configuration to the position of the robot’s gripper: φ(θ1, θ2) = (x, y).

Inverse kinematics (IK) is a more difficult task: given a point in the world x ∈W, return a set {q | φ(q) =
x}. Generally, inverse kinematics is performed through optimization-based or numerical-based methods,
e.g. IKFast.[ikf]

Figure 1.2: Calculation of obstacles in configuration space using the Minkowski difference. The Minkowski
difference can be calculated by taking the inverse robot shape, R′ = −R, and adding it to the borders of
the obstacles.

1.2.2 Obstacles

Obstacles must be considered in many motion planning problems. We define the set of obstacles in the
world as O ⊂W.

Taking the obstacles from W-space to C-space is difficult. We define Cobs = {q ∈ C | R(q) ∩O 6= ∅}; in
other words, Cobs is the set of configurations q in configuration space such that the robot collides with an
obstacle. We can also define C f ree = C \ Cobs.



Lecture 1: Motion Planning 1-3

When dealing with 1D and 2D translations of the robot, Cobs can also be defined as Cobs = O	 R(∅) =
{o − r | o ∈ O, r ∈ R(∅)}, where 	 refers to the Minkowski difference. An example of using the
Minkowski difference to find Cobs can be seen in Fig. 1.2

We now introduce a theorem related to the convexity of Cobs:

Theorem. If O and R(∅) are convex, then Cobs is convex (if they are in the same space).

Proof. We must prove that for any t1, t2 ∈ Cobs and λ ∈ [0, 1], we have λt1 + (1− λ)t2 ∈ Cobs. Let R′ = −R.
We have Cobs = O	 R(∅) = O⊕ R′. Then t1 = o1 + r1, t2 = o2 + r2 with o1, o2 ∈ O, r1, r2 ∈ R′. Since O
and R(∅) are convex, then λo1 + (1− λ)o2 and λr1 + (1− λ)r2. By adding these two equations we achieve
the desired result.

Examples for the configuration space obstacles of other robot types can be seen in Fig. 1.3. The 1-joint
manipulator has a configuration space on the real line from [0, 2π] and an obstacle is translated to a section
of the line corresponding to angles where the robot body is in collision. Note, the part of the configuration
space on the ”other side” of the obstacle is not in Cobs, even if the manipulator cannot reach this part of
configuration space. Cobs only tells us where the obstacles are. A 2-joint manipulator has a configuration
space in 2D from [0, 2π] in each direction. For this example, since only the first link’s angle determines
collisions, the obstacle in configuration space extends to cover all values of the second link angle.

Figure 1.3: Examples showing Cobs for 1-joint and 2-joint robotic manipulators.

1.3 The Motion Planning Problem

We now define the motion planning problem (Fig. 1.4).

Given:

• world space W (in R2 or R3)



1-4 Lecture 1: Motion Planning

Figure 1.4: The motion planning problem

• obstacle region O ∈W

• robot, C-space (R : c→ P(W))

• starting and goal configurations qs, qg

Goal: Find a function τ : [0, 1] → C f ree representing the path of the robot in configuration space, where
τ(0) = qs and τ(1) = qg.

Certain motion planning problems may involve variations on the original motion planning problem:

• maximize u(τ)

• change τ to be timed

• multiple goals

• dynamic obstacles/goals

• additional constraints on W or C

• uncertainty

• multi-step planning

1.4 Motion Planning Techniques

1.4.1 Geometric Methods

1.4.1.1 Visibility Graph

The visibility graph method, initially introduced by Nils Nilsson in 1969, is a geometric method for motion
planning.[Lozano-Pérez and Wesley, 1979]



Lecture 1: Motion Planning 1-5

Figure 1.5: Example of using visibility graphs to solve a motion planning problem. Obstacles must be
polygonal in configuration space for this method.

The method relies on the assumption that all obstacles are polygonal in C-space. It is important to note
that any robots whose configurations involve rotations therefore likely cannot use this method.

First, all vertices of obstacles, in addition to the start and goal points, are connected to one another if they
”see” each other in C-space, i.e. there is no obstacle along the straight line between the two vertices. This
forms a graph, upon which a graph search algorithm like A*, BFS, etc. can be used to obtain a motion
plan (Fig. 1.5).

Formally:

1. Let Vobs ⊂ C be the set of all vertices of obstacles.

2. Let V = Vobs ∪ (qs, qg).

3. Form G : (V, E) where E = {(v, u) ∈ V ×V | ∀t ∈ [0, 1] : (1− t)v + tu ∈ C f ree}.

4. Use any graph search algorithm to find path from qs to qg.

The advantages of the visibility graph method are:

• Complete: if there exists some τ, the algorithm will return it in finite time; if not, it will fail.

• Optimal: the algorithm is optimal under the shortest Euclidean path metric.

Disadvantages are:

• Only addresses subset of planning problems due to limitation of polygonal obstacles.

• Assumes explicit access to Cobs.

1.4.2 Grid-Based Methods

1.4.2.1 Grid Search Algorithm

Grid-based methods rely on two essential components:

• Discretization of the C-space



1-6 Lecture 1: Motion Planning

Figure 1.6: Example of using grid search to solve a motion planning problem. Grid points in collision
with obstacles are removed and a path is found in the remaining grid points.

• A collision checker: γ : C → 0, 1 where

gamma(q) =
{

0 : q ∈ C f ree
1 : otherwise

The grid search algorithm simply gets the center of each discretized cell, uses the collision checker to find
the points in C f ree, and connects neighboring nodes in C f ree (Fig. 1.6). A similar graph search algorithm
like BFS can be used to create a motion plan from qs to qg.

It is possible for obstacles to exist on the path between two cell centers, despite the two centers being in
C f ree. A simple way to address this problem is to assume that the minimum size of obstacles is w, and to
check every point between the center of cells with interval λw where λ < 1.

This method is both resolution complete and resolution optimal, meaning that if a solution exists it will be
found and become optimal as the resolution of the graph increases. But grid search is not actually complete
or optimal like the visibility graphs algorithm is. Another advantage is that classic graph algorithms like
BFS, DFS, A*, etc. can be used for the graph search portion of the algorithm. However, grid-based methods
suffer from the curse of dimensionality when the C-space is very high dimensional.

1.4.3 Sampling-Based Methods

1.4.3.1 Probabilistic Roadmap (PRM)

The probabilistic roadmap planner [Kavraki et al., 1996] is a sampling-based method for motion planning
(Fig. 1.7). The basic outline is as follows:

1. Randomly sample points from the configuration space, along with qs and qg.

2. Keep samples which are in C f ree.



Lecture 1: Motion Planning 1-7

Figure 1.7: Example of using probabilistic roadmaps (PRMs) to solve a motion planning problem.

3. Connect samples to each other using k-nearest neighbors or some other method, forming connected
components of samples.

4. If qs and qg are not in the same connected component, sample more points in (1).

5. Otherwise, use a graph search algorithm to find τ.

PRM is probabilistically complete, meaning if a solution exists, it will be found as the number of samples
increases (though if no solution exists, the algorithm will not be able to return a definitive failure in finite
time like a truly complete planner).

1.4.3.2 Rapidly-exploring Random Tree (RRT)

The rapidly-exploring random tree algorithm [LaValle, 1998] is another sampling-based method.

References

Ikfast: The robot kinematics compiler. URL http://openrave.org/docs/latest stable/openravepy/ikfast/.

Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE transactions on Robotics and Automation, 12(4):
566–580, 1996.

Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning. 1998.

Tomás Lozano-Pérez and Michael A Wesley. An algorithm for planning collision-free paths among poly-
hedral obstacles. Communications of the ACM, 22(10):560–570, 1979.


